
Trust region optimisation

Filip Hroch

F 8 f

May ’22



Intro into optimisation
We’re looking for something optimal

• Which is an extreme way for a point mass in physics?
• How to build warehouse?
• The shortest (or fastest) path from Brno to Wischau?
• How to be drunk with both minimal time and budget?

Fig. by Nocedal & Wright



Intro into numerical optimisation
The model

arg min f (x), x ∈ Rn + initial estimate

0

1

2

0 1 2 3 4 5
X



A method due Newton
The principle

−1
0
1
2

0 1 2 3 4 5

f (x)
f ′(x)

X

Taylor in vicinity of the optimum

f (x+p) = f (x)+df (x)dx p+12 d2f (x)
dx2 p2+. . .

The conditiondf (x)dx

∣∣∣∣
p

+ d2f (x)dx2 · p = 0



Mathematical foundations

Optimum of n-dimensional function (p ∈ Rn):

f (x + p) = f (x) + ∇f (x)Tp + 12pT∇2f (x + p) p + . . .

Conditions:
Jacobian∇f (x) = 0 does vanish

Hessian∇2f (x) is positive definite

Traps:
• Non-positive definite Hessian
• Not so good the function approximation
• The initial point overpass



SQP
Sequential quadratic programming

A model function of k-th step valid in trust region ∆k:

m(x + p) = fk + (∇fk)T p + 12pTBk p, ‖pk‖ < ∆k

Hessian (approximation): Bk = ∇2fk, or by a quasi-Newton
method (SR1)

The approximation validity

ρk = fk − fk+1
m(0) − m(p)



The trust region algorithm

for k = 1, . . .
Obtain new estimate of pk
if ρk < 1/4∆k+1 = 1/4∆k
else

if ρk > 3/4 and ‖pk‖ = ∆∆k+1 = min(2∆k, ∆̂)
else∆k+1 = ∆k
end if

end if
if ρk > 1/4

xk+1 = xk + pk
else

xk+1 = xk
end if

end for



Trust region

Graphics inspired by https://optimization.mccormick.northwestern.
edu/index.php/Trust-region_methods

https://optimization.mccormick.northwestern.edu/index.php/Trust-region_methods
https://optimization.mccormick.northwestern.edu/index.php/Trust-region_methods


Branin function

f (x, y) = a(y − bx2 + cx − r)2 + s(1 − t) cos(x) + s

a = 1, b = 5.1/(4π2), c = 5/π, r = 6, s = 10, t = 1/(8π)



Trust region downhill



Marquardt-Levenberg method

• Implemented by Minpack
https://en.wikipedia.
org/wiki/MINPACK

• Python wrapper
curve_fit

• Least-squares

f (x) = 12 ∑
r2

j , J = ∇r

(JTJ + λI)p = −JTr, ‖p‖ ≤ ∆

https://en.wikipedia.org/wiki/MINPACK
https://en.wikipedia.org/wiki/MINPACK


An implementation in Python

scipy.optimize
• large systems,
• general minimisation,
• conjugate-gradient



Optimisation with constrains

arg min
x∈Rn

f (x), ci(x) = 0, i ∈ E,
ci(x) ≥ 0, i ∈ I.

The solution:
• Lagrange multiplicators
• augmented Hessian
• natural continuation of trust region methods



The book



F The end f


